New quantitative radiographic parameters for vertical and horizontal instability in acromioclavicular joint dislocations

acromioclavicular-radiograph

Open access article New quantitative radiographic parameters for vertical and horizontal instability in acromioclavicular joint dislocations, by Zumstein, Schiessl, Ambuehl, et al. KSSTA (2018) 26(1): 125–135.

Abstract:

Purpose
The aim of this study was to identify the most accurate and reliable quantitative radiographic parameters for assessing vertical and horizontal instability in different Rockwood grades of acromioclavicular joint (ACJ) separations. Furthermore, the effect of projectional variation on these parameters was investigated in obtaining lateral Alexander view radiographs.

Methods
A Sawbone model of a scapula with clavicle was mounted on a holding device, and acromioclavicular dislocations as per the Rockwood classification system were simulated with the addition of horizontal posterior displacement. Projectional variations for each injury type were performed by tilting/rotating the Sawbone construct in the coronal, sagittal or axial plane. Radiographic imaging in the form of an anterior–posterior Zanca view and a lateral Alexander view were taken for each injury type and each projectional variation. Five newly defined radiographic parameters for assessing horizontal and vertical displacement as well as commonly used coracoclavicular distance view were measured. Reliability, validity and the effect of projectional variation were investigated for these radiographic measurements.

Results
All radiographic parameters showed excellent intra- and interobserver reliability. The validity was excellent for the acromial centre line to dorsal clavicle (AC–DC) in vertical displacement and for the glenoid centre line to posterior clavicle (GC–PC) in horizontal displacement, whilst the remaining measurements showed moderate validity. For AC–DC and GC–PC, convergent validity expressed strong correlation to the effective distance and discriminant validity demonstrated its ability to differentiate between various grades of ACJ dislocations. The effect of projectional variation increased with the degree of deviation and was maximal (3 mm) for AC–DC in 20° anteverted malpositioning and for GC–PC in 20° retroverted malpositioning.

Conclusions
AC–DC and the GC–PC are two novel quantitative radiographic parameters of vertical and horizontal instability in ACJ dislocations that demonstrate excellent reliability and validity with reasonable inertness to malpositioning. The use of AC–DC for assessing vertical displacement and GC–PC for assessing horizontal displacement in a single Alexander view is recommended to guide the appropriate management of ACJ dislocations. A better appreciation of the degree of horizontal instability, especially in lower Rockwood grades (II, III) of ACJ dislocations, may improve management of these controversial injuries.

Preoperative CT planning of screw length in arthroscopic Latarjet

laterjet-ct-planning-alpha-angle

Preoperative CT planning of screw length in arthroscopic Latarjet, by Hardy, Gerometta, Granger, et al. KSSTA (2018) 26(1):24-30.

Abstract

Purpose
The Latarjet procedure has shown its efficiency for the treatment of anterior shoulder dislocation. The success of this technique depends on the correct positioning and fusion of the bone block. The length of the screws that fix the bone block can be a problem. They can increase the risk of non-union if too short or be the cause of nerve lesion or soft tissue discomfort if too long. Suprascapular nerve injuries have been reported during shoulder stabilisation surgery up to 6 % of the case. Bone block non-union depending on the series is found around 20 % of the cases. The purpose of this study was to evaluate the efficiency of this CT preoperative planning to predict optimal screws length. The clinical importance of this study lies in the observation that it is the first study to evaluate the efficiency of CT planning to predict screw length.

Methods
Inclusion criteria were patients with chronic anterior instability of the shoulder with an ISIS superior to 4. Exclusion criteria were patients with multidirectional instability or any previous surgery on this shoulder. Thirty patients were included prospectively, 11 of them went threw a CT planning, before their arthroscopic Latarjet. Optimal length of both screws was calculated, adding the size of the coracoid at 5 and 15 mm from the tip to the glenoid. Thirty-two-mm screws were used for patients without planning. On a post-operative CT scan with 3D reconstruction, the distance between the screw tip and the posterior cortex was measured. A one-sample Wilcoxon test was used to compare the distance from the tip of the screw to an acceptable positioning of ±2 mm from the posterior cortex.

Results
In the group without planning, screw 1 tended to differ from the acceptable positioning: mean 3.44 mm ± 3.13, med 2.9 mm, q1; q3 [0.6; 4.75] p = 0.1118, and screw 2 differed significantly from the acceptable position: mean 4.83 mm ± 4.11, med 3.7 mm, q1; q3 [1.7; 5.45] p = 0.0045. In the group with planning, position of screw 1 or 2 showed no significant difference from the acceptable position: mean 2.45 mm ± 2.07 med 1.8 mm, q1; q3 [1; 3.3] p = 1; mean 2.75 mm ± 2.32 med 2.3 mm, q1; q3 [1.25; 3.8] p = 0.5631.

Conclusion
Unplanned Latarjet can lead to inaccurate screw length especially in the lower screw and can increase the risk of non-union and nerve damage. The clinical relevance of this article is that CT planning of screw length before surgery showed good results on post-operative CT.

The safe zone range for cup anteversion is narrower than for inclination in THA

THA-cup-anteversion-safe-zone

The Safe Zone Range for Cup Anteversion Is Narrower Than for Inclination in THA by William et al. CORR (2018) 476 (2): 325–335.

Abstract:

Background Cup malposition is a common cause of impingement, limitation of ROM, acceleration of bearing wear, liner fracture, and instability in THA. Previous studies of the safe zone based on plain radiographs have limitations inherent to measuring angles from two-dimensional projections. The current study uses CT to measure component position in stable and unstable hips to assess the presence of a safe zone for cup position in THA.

Questions/purposes (1) Does acetabular component orientation, when measured on CT, differ in stable components and those revised for recurrent instability? (2) Do CT data support historic safe zone definitions for component orientation in THA?

Methods We identified 34 hips that had undergone revision of the acetabulum for recurrent instability that also had a CT scan of the pelvis between August 2003 and February 2017. We also identified 175 patients with stable hip replacements who also had a CT study for preoperative planning and intraoperative navigation of the contralateral side. For each CT study, one observer analyzed major factors including acetabular orientation, femoral anteversion, combined anteversion (the sum of femoral and anatomic anteversion), pelvic tilt, total offset difference, head diameter, age, sex, and body mass index. These measures were then compared among stable hips, hips with cup revision for anterior instability, and hips with cup revision for posterior instability. We used a clinically relevant measurement of operative anteversion and inclination as opposed to the historic use of radiographic anteversion and inclination. The percentage of unstable hips in the historic Lewinnek safe zone was calculated, and a new safe zone was proposed based on an area with no unstable hips.

Results Anteriorly unstable hips compared with stable hips had higher operative anteversion of the cup (44° ± 12° versus 31° ± 11°, respectively; mean difference, 13°; 95% confidence interval [CI], 5°-21°; p = 0.003), tilt-adjusted operative anteversion of the cup (40° ± 6° versus 26° ± 10°, respectively; mean difference, 14°; 95% CI, 10°-18°; p < 0.001), and combined tilt-adjusted anteversion of the cup (64° ± 10° versus 54° ± 19°, respectively; mean difference, 10°; 95% CI, 1°-19°; p = 0.028). Posteriorly unstable hips compared with stable hips had lower operative anteversion of the cup (19° ± 15° versus 31° ± 11°, respectively; mean difference, -12°; 95% CI, -5° to -18°; p = 0.001), tilt-adjusted operative anteversion of the cup (19° ± 13° versus 26° ± 10°, respectively; mean difference, -8°; 95% CI, -14° to -2°; p = 0.014), pelvic tilt (0° ± 6° versus 4° ± 6°, respectively; mean difference, -4°; 95% CI, -7° to -1°; p = 0.007), and anatomic cup anteversion (25° ± 18° versus 34° ± 12°, respectively; mean difference, -9°; 95% CI, -1° to -17°; p = 0.033). Thirty-two percent of the unstable hips were located in the Lewinnek safe zone (11 of 34; 10 posterior dislocations, one anterior dislocation). In addition, a safe zone with no unstable hips was identified within 43° ± 12° of operative inclination and 31° ± 8° of tilt-adjusted operative anteversion. Conclusions The current study supports the notion of a safe zone for acetabular component orientation based on CT. However, the results demonstrate that the historic Lewinnek safe zone is not a reliable predictor of future stability. Analysis of tilt-adjusted operative anteversion and operative inclination demonstrates a new safe zone where no hips were revised for recurrent instability that is narrower for tilt-adjusted operative anteversion than for operative inclination. Tilt-adjusted operative anteversion is significantly different between stable and unstable hips, and surgeons should therefore prioritize assessment of preoperative pelvic tilt and accurate placement in operative anteversion. With improvements in patient-specific cup orientation goals and acetabular component placement, further refinement of a safe zone with CT data may reduce the incidence of cup malposition and its associated complications.

Level of Evidence
: Level III, diagnostic study.