How pelvic tilt influences intraoperative digital radiography in total hip arthroplasty

Digital Radiography in Total Hip Arthroplasty: Technique and Radiographic Results, by Penenberg et al. JBJS (2018) 100 (3): 226

Abstract:

Background:
Obtaining the ideal acetabular cup position in total hip arthroplasty remains a challenge. Advancements in digital radiography and image analysis software allow the assessment of the cup position during the surgical procedure. This study describes a validated technique for evaluating cup position during total hip arthroplasty using digital radiography.

Methods:
Three hundred and sixty-nine consecutive patients undergoing total hip arthroplasty were prospectively enrolled. Preoperative supine anteroposterior pelvic radiographs were made. Intraoperative anteroposterior pelvic radiographs were made with the patient in the lateral decubitus position. Radiographic beam angle adjustments and operative table adjustments were made to approximate rotation and tilt of the preoperative radiograph. The target for cup position was 30° to 50° abduction and 15° to 35° anteversion. Intraoperative radiographic measurements were calculated and final cup position was determined after strict impingement and range-of-motion testing. Postoperative anteroposterior pelvic radiographs were made. Two independent observers remeasured all abduction and anteversion angles.

Results:
Of the cups, 97.8% were placed within 30° to 50° of abduction, with a mean angle (and standard deviation) of 39.5° ± 4.6°. The 2.2% of cups placed outside the target zone were placed so purposefully on the basis of intraoperative range-of-motion testing and patient factors, and 97.6% of cups were placed between 15° and 35° of anteversion, with a mean angle of 26.6° ± 4.7°. Twenty-eight percent of cups were repositioned on the basis of intraoperative measurements. Subluxation during range-of-motion testing occurred in 3% of hips despite acceptable measurements, necessitating cup repositioning. There was 1 early anterior dislocation.

Conclusions:
Placing the acetabular component within a target range is a critical component to minimizing dislocation and polyethylene wear in total hip arthroplasty. Using digital radiography, we positioned the acetabular component in our desired target zone in 97.8% of cases and outside the target zone, purposefully, in 2.2% of cases. When used in conjunction with strict impingement testing, digital radiography allows for predictable cup placement in total hip arthroplasty.

Leave a Reply

Your email address will not be published. Required fields are marked *